Thursday - Backtracking \square
Tuesday - FFT

CSE525 Lec6: Backtracking

$$
\begin{aligned}
\operatorname{DFT}(A(k), k) & \rightarrow\left[B_{1} \ldots B_{k}\right] \quad \bullet \quad \text { Debajyoti Bera }(M 21) \\
B_{j} & =A\left(\omega_{k}^{j}\right) \text { Deba }
\end{aligned}
$$

Eight-Queens problem

Search for a feasible solution among all solutions/configurations.

Make all possible choices

Eight-Queens problem 2 Can the rusidided proven

Search for a feasible solution among all solutions/configurations by trying all possible next-steps.

$$
\begin{aligned}
& \text { acyclic } \\
& \text { directed graph }
\end{aligned}
$$

- Systematically explore all configs.

- Use recursion

- Incrementally build a feasible solution
- Prune/discontinue bad configurations

Place Queens $Q=[2,7,1,0,0,0,0,0] \quad i=4$

Eight-Queens problem

$T(k)$ placing k queens in $n \times n$ $T(k)^{2}$ board where it $n-k$ rows board where $155 n^{-k}$ rows
have queens complexity for entire board

Subset-Sum

$X=\{8,17,6,5,3,10,9\} T=15$ Valid $S S$ exists
$\mathrm{X}=\{11,6,5,1,7,13,12\} \quad \mathrm{T}=15$ No SS exists
Idea: Search among all subsets of X.

- Systematically
- Recursively
- Incrementally
$\begin{array}{ll} & x^{\prime}=\{17,6,5,3,10,9\}, \\ \text { - Solution contains } 8 \quad T=7\end{array}$
- Solution contains 17

■ ???

- Solution does not contain 17

■ ???

- Solution does not contain 8
- Solution contains $17 \quad X^{\prime}=\{17,6,5,3,10,9\}$ - ??? $\quad T=15$
- Solution does not contain 17

■ ???
$T(n, k)$: worst case time complexity of ISS on an n-sized x and
Subset-Sum k-bit number t

$$
\begin{aligned}
\leqslant T(n-1, k)+T(n-1, k)+o(1)= & 2 T(n-1, k)+o(1) \\
& =0(2 n)
\end{aligned}
$$

Is Subset $\operatorname{Sum}(X, T)$:
e : first element of x cade $/ /$ Assume that A is a global array and only choice $=I_{\delta} \delta u b \operatorname{set} \operatorname{sum}\left(x-e, T_{-}\right)^{/ /}$pass left/right indices ge. $T=1 s, e=1$ choice $2=I_{s} \operatorname{Subset} \operatorname{Sum}(x-e, T)<T(n-1, k) \rightarrow$ as large as T return choice I v choice 2 Q : Discuss its time-complexity
$T(n)$: worst case time complexity of Is subset Sum on an n-sized X

$$
=2 T(n-1)+O(1)=O\left(2^{n}\right)
$$

Longest Increasing Subsequence

BENT SQUARING ... are subsequences of SUBSEQUENCEBACKTRACKING LIS
Q. Given integer array $\mathrm{A}[1 \ldots \mathrm{n}]$, find the length of its longest increasing subsequence.

$$
\text { Incremental } \quad \text { Recursive } \quad \text { Systematic }
$$

3	1	4	1	5	9	2	6	5	3	5	8

Try to find the correct solution by looking at all increasing subsequences that start with 3, and that do not start with 3 . Try to find this recursively.

$$
\operatorname{LIS}(A[2 \cdots n])
$$

Suppose we know that LIS does not start with 3. Can you identify it recursively?

$$
\operatorname{LIs}(A[2 \cdots n]) \rightarrow \text { firol element }
$$

Suppose we know that LIS starts with 3 . Can you identify it recursively?

Longest Increasing Subsequence

Q. Given integer array A[1 ... n], find the length of its longest increasing subsequence.
Incremental Recursive Systematic

3	1	4	1	5	9	2	6	5	3	5	8

Q. What problem should be (recursively) solved? Assume that A is global. $L S(i)=$

- Given input i, return LIS of $\mathrm{A}[\mathrm{i} . . . \mathrm{n}]$

Longest Increasing Subsequence

Q. Given integer array A[1 ... n], find the length of its longest increasing subsequence.

Q. What problem should be (recursively) solved? Assume that A is global.

- LIS1(prev, i): Given input prev and i > prev, return LIS of ALi ... n] in which every element is larger than \mathbf{A} [prev] LISI (4, 9) $=\operatorname{LIS}$ of $A[9 \ldots 12]$ $A[7, \ldots]$ prev i in which every

LIS1(1,7) = ???

exhaust Suppose ... A[1] >=A[7] $=\operatorname{LIS}(1,8)$
Suppose ... A[1] < A[7], $\operatorname{LIS1}(1,8)=2$ and $\operatorname{LIS1}(7,8)=3 \mathscr{C} A(7)=1 \quad[8]$
Can you find the subsequence itself? $L=\max (1+L \mid S 1(7,8), \operatorname{LIS}(1,8))$

Longest Increasing Subsequence

Q. Given integer array A[1 ... n], find the length of its longest increasing subsequence. Incremental Recursive Systematic

3	1	7	5	4	9	2	6	5	3	5	8
1	2	3	4	5	6	7	8	9	10	11	12

Q. What problem should be (recursively) solved? Assume that A is global.

- LISl(prev, i): Given input prev and i>prev, return LIS of A[i ... n] in which every element is larger than A[prev]

LIS1(prev,i) = (recursive formula)

Can you find the subsequence itself?

Longest Increasing Subsequence

$$
L \mid S(A[1 \cdots n])=\max _{i=1 \cdots n} \operatorname{LIS} 2(i)
$$

Q. Given integer array $A[1 \ldots \mathrm{n}]$, find the length of its longest increasing subsequence.

Q. What problem should be (recursively) solved? Assume that A is global.

- LIS2(i) : Given input i, return LIS of A[i ...n] in which the subsequence starts with $A[i] \operatorname{LiS} 2(8)=2 \quad[6,8] \quad \in A[5 \cdots]$ that stank isth 5
$\begin{aligned} & A[3 \cdots] \\ & \operatorname{LIS} 2(3)=? ? ? \\ & \max \\ & \operatorname{liS} 2(i)\end{aligned}=\max \{\operatorname{LIS} 2(5), \operatorname{LIS} 2(6)$,
 Suppose ... LIS2(4) $=3$ dement after $A[3] 2152(11), 452(12)$? (exhaustive)

