0

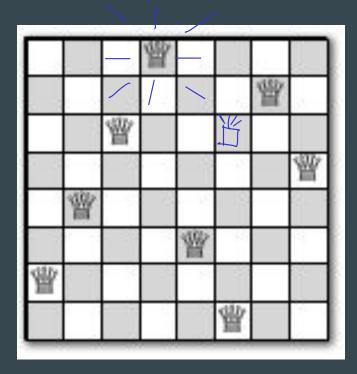
 $\operatorname{rawk}(k) \geq 32$?

CSE525 Lec6: Backtracking

$$DFT (\widehat{H}_{\mathcal{K}}) \rightarrow [\mathcal{B}_{1} \cdots \mathcal{B}_{k}]$$

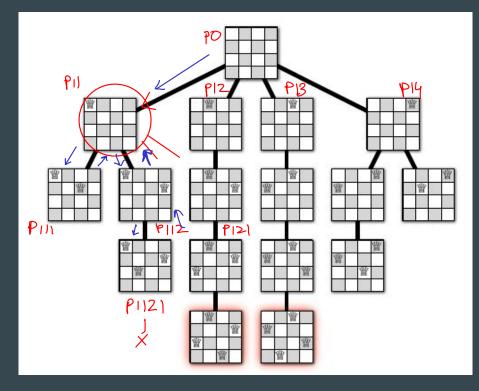
$$\widehat{B}_{j} = A(\widehat{\omega}_{k})$$
 Debajyoti Bera (M21)

Eight-Queens problem



Search for a feasible solution among <u>all</u> <u>solutions/configurations</u>.

Make all possible Suppose we make a choice towards a solution. Choices 2. Suppose we make a choice towards a solution. Eight-Queens problem 2. Can the restricted problem be solved recursively

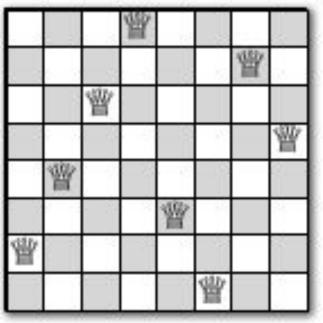


subproblem

Search for a feasible solution among <u>all</u> <u>solutions/configurations</u> by trying all possible next-steps.

- acyclic directed graph
- Systematically explore all configs.
 - Use recursion
 - Incrementally build a feasible solution
 - Prune/discontinue bad configurations

Eight-Queens problem



// where to place queens in rows i ... n given a partial placement of queens in rows 1 ... (i-1) PlaceQueens(Q[1... n], i): For all column c: If (i,c) is a feasible position: exercise Q[i] = cPlaceQueens(Q,i+1) Else // No need to consider

place Queens Q=[2,7,1,0,0,0,0] i=4

Q. Where to place queens on an empty board? List all solutions. $T(K) = (N *) T(K-1) + T_{int}(feasibility) * n$ board where 1st not not **Q.** How to determine running time for n x n board? have greens T(n) = Complekily for early board

Subset-Sum

X = {8,17,6,5,3,10,9} T=15 Valid SS exists

X = {11,6,5,1,7,13,12} T=15 No SS exists

Idea: Search among all subsets of X.

- Systematically
- Recursively
- Incrementally

Solution contains 8

Solution contains 17

???

Solution does not contain 17 ???

x'= {17, 6, 5, 3, 10, 9}

T = 7

- Solution does not contain 8
 - Solution contains 17
 - ???
- $\times'^{2} \{ 17, 6, 5, 3, 10g \}$ T = 15 Solution does not contain 17

???

case time complexity of ISS on an n-sized X and K-bit number T Subset-Sum Woset Sun(X,T): base C: first element of X are // return True iff A has a subset Write recursive code for SS(A,t) // Assumption of // return True iff A has a subset with sum t Is Subset Sun(X,T): K // Assume that A is a global array and only choice = Jo Subset Sum (X-C, T-e) $\leftarrow T(N-1, k)$ # bits to represent T-e choice2= Is Subset Sum(X-e, T) $\leftarrow T(n-l,k) \rightarrow ao large ao T$ vetuin choice / Vchoice 2 Q: Discuss its time-complexity of Is Subset Sum on an isized X T(n): worst case time complexity $= 2 T(n-1) + O(1) = O(2^{n})$

BENT SQUARING ... are subsequences of SUBSEQUENCEBACKTRACKING

Q. Given integer array A[1 ... n], find the length of its longest increasing subsequence.

Incremental Recursive Systematic 4 1 5 9 2 5 3 6 5 3 8 Try to find the correct solution by looking at all increasing subsequences that start with 3, and that do not start with 3. Try to find this recursively. LIS(A[2...n]) Suppose we know that LIS does not start with 3. Can you identify it recursively? LIS (A[2...n]) -> first element Suppose we know that LIS starts with 3. Can you identify it recursively?

Q. Given integer array A[1 ... n], find the length of its longest <u>increasing</u> subsequence.

	Incremental				Recursive			ematic			
3	1	4	1	5	9	2	6	5	3	5	8

Q. What <u>problem</u> should be (recursively) solved? Assume that A is global. $L = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$

• Given input i, return LIS of A[i ... n]

Q. Given integer array A[1 ... n], find the length of its longest <u>increasing</u> subsequence.

		Incre	emer	ıtal		Red	cursi	Systematic				
3	1	7	5	4	9	2	6	5	3	5	8	5
1	2	3	4	5	6	7	8	9	10	11	12	

Q. What <u>problem</u> should be (recursively) solved? Assume that A is global.

LIS1(prev,i): Given input prev and i > prev, return LIS of A[i ... n] in which every element is larger than A[prev] LISI (4,9) = LIS & A[9... 12] A[7,...]
A[7,...]
LIS1(1,7) = ???
A[1] >= A[7] = LISI(1,8)
Alement A[7]
Alement A[7]</

Q. Given integer array A[1 ... n], find the length of its longest <u>increasing</u> subsequence.

		Incre	emer	ıtal		Red	cursi	Systematio				
3	1	7	5	4	9	2	6	5	3	5	8	
1	2	3	4	5	6	7	8	9	10	11	12	

Q. What <u>problem</u> should be (recursively) solved? Assume that A is global.

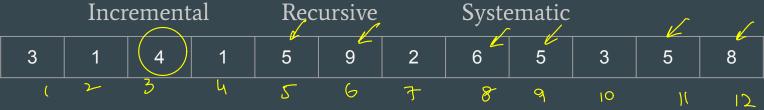
 LIS1(prev,i): Given input prev and i > prev, return LIS of A[i ... n] in which every element is larger than A[prev]

LIS1(prev,i) = (recursive formula)

Can you find the subsequence itself?

Longest Increasing Subsequence $LIS(ADMD) = \max_{v = 1.00} LIS2(v)$

Q. Given integer array A[1 ... n], find the length of its longest <u>increasing</u> subsequence.



Q. What <u>problem</u> should be (recursively) solved? Assume that A is global.

• LIS2(i): Given input i, return LIS of A[i...n] in which the subsequence starts with A[i] LIS2(8) = 2 [6,8] (A[S-1]) that starts with S A[3-1] A[3-1] A[S2(3)] = ??? 1+ max LIS2(1) = max $\{LIS2(5), LIS2(5), LIS2(6), LIS2$